
CEWES MSRC/PET TR/98-03

A Fortran90 Module for Message-Passing
Applications with Unstructured Communication Patterns

by

S. W. Bova

01h01298

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

A Fortran90 Module for Message-Passing Applications

with Unstructured Communication Patterns

S.W. Bova�

February 5, 1998

1 Introduction

For high-performance, scienti�c computing, message-passing is often the paradigm of choice,
e.g. MPI, the Message-Passing Interface standard. Incorporating a message-passing capa-
bility within an application involves the consideration of several bookkeeping issues such
as the number and identity of processors with which a given processor communicates, the
identi�cation of data which must be exchanged, etc.

Consider a �nite element (or �nite volume) application that solves a partial di�eren-
tial equation. In order to develop a message-passing parallel implementation, the �nite
element mesh must be partitioned among the processors. Furthermore, point-to-point com-
munication is required as a result of the local nature of the �nite element approximation.
More speci�cally, each process must exchange data associated with grid points along the
inter-processor interfaces.

If a structured mesh is used to discretize the domain, then the resulting point-to-point
communication patterns are also structured. For example, a structured grid can easily be
partitioned among the processors in such a way that, except possibly for processors along
the boundaries, each has an upper, lower, left and right neighboring process. Contrast this
situation to that which is encountered if an unstructured mesh is used to discretize the
domain. Figure 1 illustrates an unstructured triangulation that has been partitioned among
several processors. In general, each processor has a di�erent number of processes with which
it must exchange data, and the length of each message can also vary substantially. In order
to manage such unstructured communication patterns, certain data must be available to
the application. In particular, each processor must store the number of neighboring proces-
sors for point-to-point communication; the destinations (origins) of the messages it sends
(receives); the number of grid points along each inter-processor boundary; the identities of
these grid points; arrays (bu�ers) in which the incoming and outgoing messages are stored;
and �nally, the identity of the processor in question.

Many computational mechanics applications have unstructured communication patterns
so that simply representing the data associated with a message is a cumbersome task. If
the application is written in C or C++, the use of structures or classes provides a natural

�CEWES MSRC On-site CFD Lead for PET, Mississippi State University

A Fortran90 Module

Figure 1: An unstructured �nite element mesh. The colors represent data distributed among
di�erent processors.

3 of 11

A Fortran90 Module

way to organize this data. However, the majority of scienti�c applications are written in
Fortran. The remainder of this work describes one way in which this data can be organized
within a Fortran program which uses a �nite element method to solve a partial di�erential
equation. This approach exploits some of the new features of Fortran90. Since Fortran77
is a subset of Fortran90, existing Fortran77 codes can easily use the proposed approach
by switching to a Fortran90 compiler and incrementally adding the new language features.
This report assumes that the reader has a basic familiarity with message-passing computing
and Fortran90. It is not intended to be a tutorial in either subject. The interested reader
who would like more background information should consult the literature (e.g. see [1, 2]).

I emphasize that the type of unstructured communication patterns illustrated above
may arise in applications other than unstructured �nite element solvers. However, very
similar data organization issues will need to be addressed. Hence the approach described
herein may be applied. Features of Fortran90 such as modules, dynamic memory alloca-
tion, global variables, and user-de�ned datatypes are exploited in an attempt to bundle this
data with functions in the spirit of a C++ class. (In fact, many object-oriented concepts
can be expressed in Fortran90 [3, 4, 5]. See also the object-oriented Fortran90 web page
at http://www.cs.rpi.edu/~szymansk/oof90.html.) It should be noted that the current MPI
standard does not specify a Fortran90 binding. I describe below one way in which these lan-
guage enhancements may be used in a portable MPI implementation which adheres to the
standard. Section 2 describes the proposed data structure and associated subroutines; Sec-
tion 3 illustrates how the module may be used; Finally, Section 4 summarizes the proposed
approach and describes how to obtain the module.

2 Module De�nition

2.1 Data Declarations

The module is written assuming that message-passing is implemented using an MPI library,
but the module does not depend on MPI functionality nor does it reference any MPI �les
or routines. Thus, it should be straightforward to modify the module to use a di�erent
message-passing library. The key to the data organization is that the messages are stored in
an array of user-de�ned datatypes. In the C language this would be an array of structures.
This array, together with other variables such as the process rank, MPI communicator, etc.,
are declared as global data (across the program units which are local to a single processor).
This is in contrast to a Fortran77-style common block, in which the memory locations are
made available to all the subprograms. With a common block, the same location in memory
could in fact be referenced by many di�erent variables. A Fortran90 module di�ers in that
it introduces a global scope of a variable very similar to that of C programs.

The precise variable declarations are given in Figure 2. The implicit none statement
turns o� implicit typing, and forces explicit decalration of all variables. This statement helps
to detect typographical errors in the source code at compilation instead of at run time. The
next group of statements is the heart of the data organization strategy. This group de�nes
a datatype called r message. Here the number of grid points that make up the message,
its destination/origin, and allocatable space for the send bu�er, receive bu�er, and the list
of grid points are all bundled together. Next, an allocatable array of type r message is

4 of 11

A Fortran90 Module

module mp_kit

implicit none

type r_message

integer npoints ! number of grid points

integer dest ! destination/origin of message

real, pointer, dimension(:) :: rbuff !receive buffer

real, pointer, dimension(:) :: sbuff !send buffer

integer, pointer, dimension(:) :: points !list of grid points on

! processor interface for a given message

end type r_message

type (r_message), allocatable, dimension(:) :: mesg

integer :: mp_comm ! mpi communicator

integer :: mp_nsr !number of neighboring processors for

! pt-to-pt communication

integer :: mp_myid ! rank of this process

integer, allocatable, dimension(:,:):: mp_stats ! MPI message statuses.

integer, allocatable, dimension(:) :: mp_reqst ! MPI request handles

end module mp_kit

Figure 2: Module data de�nitions of user-de�ned datatype and global variables.

declared and named mesg, followed by integer variables which are used to store the MPI
communicator, the number of neighboring processes, and the rank of the process in question.
Finally, two more allocatable arrays, mp stats and mp reqst, are declared. These arrays
are intended to be used for the MPI status and MPI request arrays that are required when
using the non-blocking communication routines MPI Isend() and MPI Irecv(). In MPI,
each pending asynchronous send or receive operation is assigned a \request handle". An
array is needed to simultaneously track more than one operation. Similarly, a completed
operation has several pieces of information associated with it which are collectively termed
a \status". (See [1] for the details on MPI asynchonous communication routines.)

2.2 The Subroutines

In order to provide functions and subroutines to operate on the data shown in Figure 2, the
module is modi�ed to include four subroutines as shown in Figure 3. The last argument of
each routine is an error code that is returned from the Fortran90 allocate and deallocate

statements. Thus the programmer can test the error code, and if nonzero, appropriate
action can be taken. This work implements only the basic functions of message creation
and deletion. Additional functionality could of course be provided; e.g. to load and unload
message bu�ers. Below, I describe the basic purpose of each subroutine. Examples of their
use are given in the following section.

5 of 11

A Fortran90 Module

module mp_kit

implicit none

...previously defined variables...

contains

subroutine mp_kit_init(ssize, nproc, comm, rank, error_code)

integer, intent(in) :: ssize ! mpi status size

integer, intent(in) :: nproc !number of neighboring processors

integer, intent(in) :: comm !mpi communicator

integer, intent(in) :: rank ! rank of this process

integer, intent(out) :: error_code !allocation error code from system

...rest of routine...

subroutine alloc_msg(dumb, npoints, dest, dof, list, error_code)

type (r_message) :: dumb ! dummy message structure

integer, intent (in) :: npoints !number of grid points on the interface

integer, intent (in) :: dest !destination

integer, intent (in) :: dof !degrees of freedom per grid point

integer, dimension(npoints), intent (in) :: list ! list of points

! on processor interface

integer, intent(out) :: error_code !allocation error code from system

...rest of routine...

subroutine dealloc_msg(dumb, error_code)

type (r_message), intent(in) :: dumb ! dummy message structure

integer, intent(out) :: error_code !deallocation error code from system

...rest of routine...

subroutine mp_kit_close(error_code)

integer, intent(out) :: error_code !deallocation error code from system

...rest of routine...

end module mp_kit

Figure 3: Module subroutine bindings.

6 of 11

A Fortran90 Module

The �rst subroutine, mp kit init(), initializes the module. All arguments except the
last one are input. It sets the variables mp nsr, mp comm, and mp myid. It also allocates the
arrays mp stats, mp reqst, and mesg. The next routine, alloc msg(), allocates the arrays
rbuff, sbuff, and points for a single element of type r message. It also intializes the �elds
npoints, dest, and points. The subroutine dealloc msg() frees the memory associated
with the arrays rbuff, sbuff, and points. Finally, the subroutine mp kit close() frees
the memory associated with the arrays mesg, mp stats, and mp reqst.

3 Using the Module

The module is initialized by calling mp kit init() once. Values for the dummy arguments
ssize, rank and comm are obtained from the message-passing system. Then each message
structure in the array mesg is allocated and initialized by calling alloc msg(). The routines
dealloc msg() and mp kit close() are also provided. (It may not be necessary to call
these routines, since their only function is to free the memory associated with the message
structures and this will happen automatically at program termination.) Figure 4 presents
an example of how to initialize the module. Note that each program unit that accesses the
module data or functions must issue the statement use mp kit.

Finally, Figure 5 presents a code fragment which illustrates how a subroutine may load
the message bu�ers and perform an asynchronous exchange. For each message, the number
of words is calculated from the number of grid points on the interprocessor interface and the
number of degrees of freedom per grid point. First, a non-blocking receive is posted. The
rank, or process number, of the message destination is then extracted from the r message

datatype. (For an exchange, each processor must both send a message to and receive a
message from each of its neighbors, thus the destination and origin of each send/receive
pair is identical.) Next, a loop is performed over the interprocessor interface and each grid
point index is extracted from the structure. The send bu�er for the message is subsequently
loaded from the solution array, and a call to MPI Isend() is made to initiate the send.
Finally, a call to MPI Waitall() completes the exchange.

Some discussion is warranted regarding the precise syntax of the calls to MPI Irecv()

and MPI Isend(). As mentioned previously, there is currently no Fortran90 binding for MPI.
Thus, the MPI routines are simply expecting an address and have no capability to interpret
user-de�ned structures as de�ned by Fortran90. Consider the syntax of MPI Isend(). The
�rst argument is the message bu�er. In Figure 5 this bu�er is denoted mesg(i)%sbuff(1).
In fact, since there are no restrictions on passing pointers to arrays as subroutine actual
arguments, all of the following are equivalent[6]:

call MPI_Isend(mesg(i)%sbuff(1), words, MPI_REAL, rank, &

tag, mp_comm, mp_reqst(r_num), mpierr)

call MPI_Isend(mesg(i)%sbuff, words, MPI_REAL, rank, &

tag, mp_comm, mp_reqst(r_num), mpierr)

call MPI_Isend(mesg(i)%sbuff(:), words, MPI_REAL, rank, &

tag, mp_comm, mp_reqst(r_num), mpierr)

7 of 11

A Fortran90 Module

program myprog

use mp_kit

...rest of routine...

! initialize MPI

call MPI_Init(mpierr)

call MPI_Comm_rank(MPI_COMM_WORLD,myid,mpierr)

call MPI_Comm_size(MPI_COMM_WORLD,commsize,mpierr)

! initialize the module

call mp_kit_init(MPI_STATUS_SIZE,nsr,MPI_COMM_WORLD,myid,ierr)

ndof = 4 ! four degrees of freedom per grid point

! initialize the messages

do i=1, nsr

read(*,*)dest,nint !get destination and number of interface points

do j=1, nint

read(*,*) iface(j) !get the list of grid points on the interface

end do

call alloc_mesg(mesg(i), nint, dest, ndof, iface)

end do

...rest of routine...

Figure 4: Illustration of how to initalize the module data.

8 of 11

A Fortran90 Module

...rest of routine...

do i = 1, mp_nsr ! loop over the messages

words = (mesg(i)%npoints)*ndof

rank = mesg(i)%dest

call MPI_Irecv(mesg(i)%rbuff(1), words, MPI_REAL, &

rank, tag, mp_comm, mp_reqst(i), mpierr)

! load up the send buffer and send message

k = 1

do j = 1, mesg(i)%npoints

jpt = mesg(i)%points(j) ! get the grid point number

mesg(i)%sbuff(k) = soln(1,jpt) !load first DOF

mesg(i)%sbuff(k+1) = soln(2,jpt) !load second DOF

mesg(i)%sbuff(k+2) = soln(3,jpt) !load third DOF

mesg(i)%sbuff(k+3) = soln(4,jpt) !load fourth DOF

k = ndof*j + 1

end do

r_num = mp_nsr + i ! increment the request number

call MPI_Isend(mesg(i)%sbuff(1), words, MPI_REAL, rank, &

tag, mp_comm, mp_reqst(r_num), mpierr)

end do

call MPI_Waitall(2*mp_nsr,mp_reqst, mp_stats, mpierr)

...rest of code...

Figure 5: Illustration of how an asynchronous, non-blocking exchange may be performed.

9 of 11

A Fortran90 Module

call MPI_Isend(mesg(i)%sbuff(1:words), words, MPI_REAL, rank, &

tag, mp_comm, mp_reqst(r_num), mpierr)

In practice, however, (at the time of this writing) there is a bug in version 7.1 of the SGI
Fortran90 compiler. The result of this bug is that correct results are obtained only if the
bu�er is passed as mesg(i)%sbuff(1). Using version 4.1.0.3 of the IBM compiler, all of the
above cases work as expected.

4 Summary

A Fortran90 module has been presented which exploits new features of the language such as
modules, dynamic memory allocation, global variables, and user-de�ned datatypes. Details
of the data structure and associated subroutines were also described. This module has been
used to parallelize a serial, unstructured �nite element program [7]. Interested readers may
obtain the module, together with associated make�les (for the IBM SP, CRAY T3E, and
SGI O2000) and a test program from http://www.erc.msstate.edu/~swb/Tools.

A primary advantage of using the approach of user-de�ned datatypes and modules is
that the data required for message-passing are stored as global variables. Typically, the
message-passing occurs inside several levels of subroutine calls. The use of modules allows
this data to be available without modifying the argument list of all parent routines and
simultaneously avoids introducing common blocks. Furthermore, the use of the user-de�ned
datatype allows data to be organized in such a way that the resulting code is, in my opinion,
more readable.

Future developments of the module are planned. For example, the private attribute
could be added to the de�nition of the r message datatype with functions to access certain
elements by the user. In this way, data elements such as the message destination could be
protected from corruption. This would be safer at the cost of a little overhead. Also, other
modules could be de�ned which are based on the present one which would contain routines
to pack/unpack message bu�ers, send messges, etc. This would make the resulting codes
easier to read and maintain.

References

[1] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. MIT Press, London, 1994.

[2] Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams. Programmers Guide

to Fortran90. Springer, New York, 1996.

[3] Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski. Expressing object-
oriented concepts in Fortran90. ACM Fortran Forum, 16(1), April 1997.

[4] Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski. How to express
C++ concepts in Fortran90. Technical Report PPG-1569, Institute of Plasma and
Fusion Research, UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095-1547,
February 1997. Submitted for publication.

10 of 11

A Fortran90 Module

[5] Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski. Introduction to object-
oriented concepts using Fortran90. Technical Report PPG-1560, Institute of Plasma and
Fusion Research, UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095-1547,
July 1996.

[6] Charles Koelbel. Rice University. Private communication, July 1997.

[7] S. W. Bova. A scalable SUPG method for free surface
ows. Poster presentation at
SC97, San Jose, CA, 1997.

11 of 11

